
WoTify: A platform to bring Web of Things to your devices

Ege Korkan
ege.korkan@tum.de

Technical University of Munich
Germany

Hassib Belhaj Hassine
hassib.belhaj@tum.de

Technical University of Munich
Germany

Verena Eileen Schlott
verena.schlott@campus.lmu.de

Ludwig Maximilian University of Munich
Germany

Sebastian Käbisch
sebastian.kaebisch@siemens.com

Siemens AG, Germany

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich
Germany

ABSTRACT
The Internet of Things (IoT) has already taken off, together with
many Web of Things (WoT) off-the-shelf devices, such as Philips
Hue lights and platforms such as Azure IoT. These devices and plat-
forms define their own way of describing the interactions with the
devices and do not support the recently published WoT standards
by World Wide Web Consortium (W3C). On the other hand, many
hardware components that are popular in developer and maker
communities lack a programming language independent platform
to integrate these components into the WoT, similar to npm and
pip for software packages. To solve these problems and nurture the
adoption of the W3C WoT, in this paper, we propose a platform to
WoTify either existing hardware by downloading new software in
them or already existing IoT and WoT devices by describing them
with a Thing Description.

CCS Concepts: • Software and its engineering → Software libraries
and repositories; Abstraction, modeling and modularity;

Keywords: IoT, WoT, Marketplaces

1 INTRODUCTION
In the recent years, the Internet of Things (IoT) was the focus of
many analyses with billions of devices expected to be connected
to the Internet. Some of these billion devices are already out there,
connected to the Internet, providing sensing and actuation capa-
bilities. More are waiting to be connected to the Internet and thus
be part of the IoT.

When we look at the Internet, most of the applications run on
the Web layer. This has resulted on the Web having one of the
biggest developer communities behind [1] and we can foresee the
same happening for the Web layer of IoT that was named the Web
of Things (WoT). The WoT in itself is a concept of having Web
technologies for IoT devices and offer the same ease of applica-
tion development composed of IoT devices. WoT differentiates it-
self from the Web by being related to underlying hardware such
as sensors, controllers, robots, actuators and more, something that
was foreign to the Web community.

As with all the Web standards, the Web of Things is also being
standardized by theWorldWideWeb Consortium (W3C) bymeans
of different building blocks such as Thing Description (TD)[2],

Scripting API[3] and more1. This standardization effort has started
on 2016 [4] and the Thing Description standard will be released by
the end of 2019. Being this recent, there has not been enough time

1The entire work of the working group can be found at https://www.w3.org/WoT/
WG/

Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Ger-
many

(B)
Backend
Server

Thing
Description
Templates

WoT
Implementation
Source Code

(C)
Implementations

Database

WoTify
 Search a WoT implementation

Trending Latest

(A)
WoTify Homepage

Figure 1: WoTify concept illustrating different components of the
WoTify system

to build a community around the W3C WoT, which is important
for the acceptance and dissemination of the standard.

When we look at the wider scope of the IoT, there are multiple
proposals of IoT marketplaces [5][6]. These marketplaces offer a
way to obtain applications for a wide variety of IoT devices and
contribute to the IoT landscape with a convenient and standard-
ized way to obtain services and applications from the IoT devices.
However, these marketplace concepts are not specifically aimed at
the W3C WoT applications and devices.

1.1 Problem Statement
For many communities, a dedicated platform is where new mem-
bers of the community would come to. Even though code repos-

itories like GitHub2 can host projects, tutorials and more, they
remain generic. Thus, specific platforms gain importance within
communities, with package managers playing a similar role for
software specific ones. It is possible to see platforms such as Thin-

giverse3 for 3D Printer community, Make:4 and Instructables5 for

the maker community, hackster.io6 for hardware design commu-
nity. Another example is the Node-RED Library[7] which supports
over 3000 projects that are built specifically for the Node-RED pro-
gramming tool. Moreover, package repositories and their associ-
ated command line interfaces as package managers became the de
facto standard for installing, publishing and maintaining software

2https://github.com/
3http://thingiverse.com
4https://makezine.com/projects
5https://www.instructables.com
6https://www.hackster.io

Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany E. Korkan, H. Belhaj, V. Schlott, S. Käbisch and S. Steinhorst

projects, such as npm7 for JavaScript, pip8 for Python or Maven9

for Java.
In the case of theW3CWoT, unfortunately there is no such plat-

form that would enable people to find projects or anyone to publish
projects in a W3C WoT compatible way, making it tedious to inte-
grate various IoT devices into theWoT. After the publication of the
Thing Description standard, there will be a need to welcome new
members with a platform that consists of projects and the commu-
nity interaction that is found in other platforms.

The Eclipse Thingweb project [8] aims to address some of these
issues but there is currently no repository to group all the exist-
ing projects of the WoT community or to allow new projects to
be published. There are numerous platforms and repositories but
they are mostly package managers for a specific programming lan-
guage and they are not based on WoT technologies like the TD.
This makes it more difficult to convince how diverse the applica-
tions of the WoT are, hinders the further acceptance of the WoT
and can result in existing IoT device owners to reinvent the wheel,
which is the main reason why we often see siloed IoT solutions.

1.2 Contributions
We propose a platform calledWoTify that is able to host W3CWoT
projects provided by the community which can be used by anyone
to turn their Internet connected devices into W3C WoT compati-

ble devices, i.e. to WoTify them10. WoTify hosts project pages that
can be composed of source code of any programming language or
TD templates that can be used to describe already existing closed
source and brownfield IoT devices with a TD. In the end, our plat-
form allows anyone to search for W3C WoT projects or to con-
tribute to the W3C WoT by sharing new implementations.

In particular, we propose:

(1) a currently running platform with already existing imple-
mentations, ready for the WoT community,

(2) a method to bring WoT functionality to any Internet con-
nected device,

(3) a command line interface idea for the W3C WoT that is in-
dependent from a programming language.

We imagine WoTify to be the major WoT platform where even
manufacturers can find a TD for their device that is provided by
the community.

2 W3CWEB OF THINGS
The Web of Things is a set of design and programming norms
that enable real world internet connected devices to be part of the
World Wide Web. It started as an academic initiative to with the
main goal of enabling device interoperability. It is based on the
use of existing and widespread Web concepts, standards and pro-
tocols, such as REST, HTTP, CoAP and JSON, to enable inter device
communication and device access.

For example, some Web of Things devices are the Philips Hue
lights, even though they might not be marketed as such. They can
be accessed and controlled using a RESTful API and standard com-
munication protocols such as HTTPS. The problem with such de-
vices is that discovering and understanding how to use their API is
not a straightforward task. The Hue API is described in proprietary
websites and datasheets. This requires developers to do more work

7http://npmjs.com
8http://pypi.org
9https://maven.apache.org/
10By WoTify, we mean two things: the process of integrating a device into WoT and
the name of the platform that will help with that.

Figure 2: Photo of a Raspberry Pi with a Sense HAT attached on
it[9].

to understand the proprietary API descriptions of each device they
are trying to work with.

To solve this problem, the W3C started the WoT working group
in 2016 to standardize a set of mechanisms for describing and
working with Web of Things devices with the goal of enabling
interoperability between devices, independent from the underly-
ing framework and implementation. The main building blocks of
theW3CWoT standardization effort are now being finished and in-
clude theWoT Thing Description[2] andWoTArchitecture[10]. Of
these two, the WoT Thing Description is the primary and most im-
portant building block, describing the public interface of a Thing.
A Thing’s TD provides a formal description of the functionalities
of the Thing and how to use them. This removes the need to un-
derstand a multitude of non-standard, manufacturer specific API
descriptions when integrating devices from different manufactur-
ers. Another advantage provided by TDs is that they can be writ-
ten for existing Web connected devices. An existing Thing can be
made W3C WoT compatible simply by having a TD added to it.

Coming back to the Philips Hue light example discussed above,
we can make it W3C WoT compatible simply be creating a TD to
describe its API. This can be a simple translation of the API descrip-
tion provided on the Philips website to the standard TD format,
making the Hue’s API understandable to any developer familiar
with the WoT TD standard. This can enable much quicker devel-
opment times when integrating it with other WoT enabled devices
from other manufacturers, as developers no longer need to navi-
gate multiple manufacturer websites to fetch the API information
for each device independently.

Similarly, any Internet connected device can beWoTified. WoTi-
fying a device can be as trivial as simply writing a TD to describe
an existing device’s API or as complicated as extending a non-
Internet-connected device with network interface to be remotely
accessed (using an ESP8266 or a Raspberry Pi for example) and de-
scribing the resulting interface in a TD. Any device that can have a
Web server with any Web protocol can thus be turned into a W3C
WoT enabled device.

An example of a device that may be WoTified this way is the
Raspberry Pi Sense HAT. It is a suite of sensors and an LED display
that can be attached to a Raspberry Pi like in Figure 2. Out of the
box, the Sense HAT is not an IoT device. However, it is possible
to write a Web server that runs on the underlying Raspberry Pi
and enable the functionality of Sense HAT as a Web service. Once

WoTify: A platform to bring Web of Things to your devices Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany

(a) The homepage of Node-RED Library, showing different contributions
by the Node-RED community[7].

(b) A project page of Node-RED Library, containing information to inte-
grate the project into the Node-RED programming tool[11].

Figure 3: Two screenshots of the Node-RED Library platform that
can host different projects from contributors

this work has been done, and a TD describing the resulting API
is created, anyone can install this Web server on their Sense HAT
attached Raspberry Pi and have it automatically turned into aW3C
WoT device.

3 CONCEPT
The idea behind WoTify is to have a platform available for the en-
tire WoT community, composed of expert and new members alike.
The community would contribute to WoTify by sharing their WoT
implementations or by downloading what the other members of
the community have already shared. Since the word platform is
used in many different contexts, we want to explain what exactly
WoTify can do in this section.

We think that Node-RED library is a very good example of a sim-
ilar platform that has also influenced design decisions of WoTify.
As seen in Figure 3a, Node-RED library allows anyone to con-
tribute and to search for contributions. After choosing a contri-
bution, i.e. a node, one would be met with a project page like in
Figure 3b, that contains all the relevant information and statistics
about the project.

Device Owner

WoT?
WoTify

Search
myRobot

Pick
Project

WoTify
myRobot

myRobot myRobot

Figure 4: How to search for a project to turn an Internet connected
device into a Web of Things device

Our aim with WoTify is to provide the same benefits but in the
context of W3C WoT. This means, being able to search for WoT
projects, download them and add new projects. However, the WoT
is not a programming tool like Node-RED. The WoT is a program-
ming language, tool or environment independent way to connect
devices on the application layer and relies on standards from the
W3C.

Since it relies on a set of standards, in order for a device to
count as a W3C WoT device, it should have a TD representation.
A W3C WoT device could be programmed in any programming
language but its capabilities and services must be described with
a TD. This means that WoTify must support TDs and be able to
host projects programmed in any programming language. Further-
more, one can retrofit already existing IoT devices with a TD and
turn them into W3C WoT devices as explained in Section 2. This
means that WoTify should also support distribution of TDs of de-
vices without the software that would run on the devices since
already existing IoT devices may not allow a brand new software
downloaded through WoTify to run on themselves.

In the end, WoTify aims to facilitate the two following aspects:
Using a WoT Project: Once one has a device to integrate into

the WoT, may it be a barebone computer like a Raspberry Pi or an
ESP8266 with some sensors or an off-the-shelf Philips Hue device,
WoTify is the next step on integrating this device into the WoT. As
shown in Figure 4, the device owner:

(1) searches for a WoT device project by providing the device
name,

(2) chooses one of the results presented by WoTify based on
programming language preference, complexity etc.

(3) if the project is a TD: Downloads the TD and start interact-
ing with the device according to the WoT interaction pat-
terns

(4) if the project is a software implementation: Reads the
project page for installation instructions, install the project
on the device and start interactingwith the device according
to the WoT interaction patterns

(5) gives feedback on the project.

Contributing toWoTify library: If one has a W3CWoT com-
patible device and its source code to share with the community, it
can be done through WoTify. As shown in Figure 5, a W3C WoT
device owner:

(1) goes to WoTify homepage to add a new project
(2) fills in the details of the project, such as a name, a TD tem-

plate, platform such Raspberry Pi, Arduino, etc., topics such
as sensor, lighting, robotics and source code repository link

if the device can run 3rd party software.
(3) the project goes online, available for the community.

In the WoT community, there are already contributors with
W3C WoT compatible devices as seen in the Plugfests at Face-to-
Face meetings of the working group. These devices are built with
the knowledge and expertise gained from the standardization pro-
cess and would be considered as contributions to the community
in general. With the WoTify becoming online, these could be some

Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany E. Korkan, H. Belhaj, V. Schlott, S. Käbisch and S. Steinhorst

WoT Device Owner

WoTify

Add
Project

myRobot Project
TD: {...}

Platform: Raspberry
Topic: Robotics

SourceCode: Link
...

myRobot

Figure 5: How to share the implementation of a W3C WoT device
on WoTify

of the first contributions that further demonstrate the use case of
WoTify.

3.1 WoTify Command Line Interface
Since the beginning of 2010s, packagemanagers and command line
interfaces (CLI) for programming languages have become the de-
facto standard for installing different libraries. For example, we see
npm for JavaScript, pip for Python, Maven for Java and even more
when we consider other programming languages. Each of these
tools can browse repositories, each containing more than 100.000
projects. Similarly, Linux distributions support package managers
to install packages from different programming languages. In all
the cases, these packagemanagers and command line interfaces, to-
getherwith the vast array of different packages and projects hosted
in a repository become a very strong selling point, or even some-
times referred as the killer app[12].

With WoTify, we have also considered having such a CLI to en-
able easy installation of WoTify projects. This CLI would enable
to run a command like wotify install myRobot-flask which
would install the project called myRobot-flask, found at WoTify
platform, on a Raspberry Pi computer. There are two main differ-
ences compared to existing package managers and CLIs when in-
stalling a project on a device with WoTify:

(1) The programming language can be different for each project.
This results in the need to have a wrapper for the language
of the project.

(2) The project might need to be installed on an external device.
This results in requiring a wrapper for copying/flashing the
source code to the target device. (Cross Compiling)

1 {

2 "name": "wot -mearmpi",

3 "version": "1.0.0",

4 "description": "W3C WoT interface for the MeArm Pi

Robotic Arm",

5 "scripts": {

6 "install": "pip install -r requirements.txt"

7 }

8 }

Listing 1: package.json file used by npm to install a Python package

Given that most of the languages used by the current WoT com-
munity already have CLIs, package managers and repositories, we
aim to leverage them and only create a wrapper around them.
However, all the different languages require a prerequisite set of
tools for the CLIs to work. For example, to install a package with
npm, the npm software has to be installed, along with node.js de-
velopment environment. This means that a command like wotify
install myRobot-flask should check and install build environ-
ment, which depends on the underlying operating system.

For WoTify CLI, we are being inspired by the way npm handles
different configurations. This way, WoTify would be similar to a
tool that a significant number of the currentWoT implementations
are built with. As seen in line 6 of Listing 1, npm is able to rely
on a set of predefined terms that can run any command. In this

Figure 6: WoTify main page showing search results for Sense HAT
related projects

Figure 7: A project page on WoTify showing general information
on how to use the project.

case, even though we are using npm, which is for the JavaScript
language, we are installing a project in the Python language by
overriding the install command on line 6. This is not the rec-
ommended use of npm but we want to use a similar approach in
WoTify.

4 WOTIFY IMPLEMENTATION

Figure 8: Project page onWoTify showing a Thing Description Tem-
plate. This Thing Description can be downloaded in case of already
existing non-W3CWoT devices and to enable interoperability with
other W3C WoT devices.

WoTify: A platform to bring Web of Things to your devices Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany

The concept that we have introduced in Section 3 is imple-
mented as a Web application that will be available on the Eclipse

Thingweb Homepage11. It consists of a front-end Web user in-
terface, a back end and a database, as illustrated in Figure 1.
The WoTify front-end homepage allows querying and displaying
available WoT projects, and allows users to contribute their own
projects. The back end is connected to the front end and database
and it handles queries, validates, retrieves and stores projects and
organizes user authentication. The database stores all user projects
with their attached data.

4.1 Searching for a WoT Project
As the main purposes of WoTify are the discovery of WoT projects
and the contribution of these, the landing page offers searching ex-
isting projects and adding new projects. Users can search for a spe-
cific term, an implementation platform (e.g. Raspberry Pi), a topic
or custom keywords. The results of an entered query will then be
shown below the search bar of the homepage as shown in Figure 6.
To better distinguish between projects that are TD templates and
actual WoT implementations, the search results will be displayed
in a different colors. When a queried project is selected by the user
via clicking on it, a new page comprised of the project’s details
will be loaded as in Figure 7. Besides the standard information like
name, short description and implementation type, the associated
keywords, topics, level of complexity and link to Github repository
can be also examined. However, the focus of the project page lies
on the General and Thing Description area at the center:

• The General tab will display the content of the associated
repository’s main markdown file that is usually referred to
as the Readme document. Contributors are strongly encour-
aged to describe the implementation in detail in this file
and provide installation instructions and requirements. If
no such file is available, the project’s description is viewed
instead.

• The Thing Description tab displays the project’s TD file
which will be viewed in JSON format as shown in Figure 8.
If the projects is meant to WoTify an already existing IoT
device, this TD will be used as the template.

4.2 Contributing to WoTify with a new Project
If a userwants to contribute to theWoTify platform, theAdd Project
button on the main page needs to be clicked. A form, with all the
required inputs needed for a WoTify implementation will be dis-
played and needs to be filled out. This form can be seen in Figure 9.
To fill out the Thing Description input, the user can either paste the
raw content or upload a JSON file from the local machine. When
all required fields are correctly filled and validated by the back end,
a new project will be added to the system’s database and can then
be retrieved by other users.

The form we use to ask for the input relies on the WoTify im-
plementation schema that can be seen in Listing 2.

UsedTechnologies:The back end is based onNode.js, the front
end is implemented using the Vue.Js frontend framework. Mon-
goDB was chosen as database, as it is based on the JSON format
and therefore aligns with JSON basedWoT technologies. These im-
plementation choices allow our system to be highly extensible and
scalable.

11http://www.thingweb.io/

Figure 9: WoTify Add Project page showing what information one
has to provide to share their project on WoTify

5 RELATEDWORK
In recent years, various concepts have been developed to inte-
grate different IoT offerings (e.g. services such as properties or ac-
tions from physical Things) into existing IoT ecosystems. The BIG
IoT (Bridging the Interoperability Gap of the Internet of Things)

project 12 developed a marketplace on which IoT offerings can be
setup, discovered and used through simple integration into new
IoT services or applications[5]. As a technical concept, the BIG IoT
ecosystem is based on a so-called Offering Description (OD), which
can be seen as a similar approach to the W3C Thing Description.
WoTify can be also seen as a marketplace that offers (existing)WoT
projects for the community. However, WoTify is independent of a
specific IoT ecosystem such as BIG IoT and uses the upcoming stan-
dardized W3C WoT building blocks to make services or devices
WoT enabled.

We also see Thingweb Directory13 as an important work to-
wards hosting WoT related projects. Thingweb Directory is de-
signed to host TDs and offer semantic search to find TDs of (once)
running devices. It is similar to WoTify, as WoTify can also host

12http://big-iot.eu/
13https://github.com/thingweb/thingweb-directory

Second W3C Workshop on the Web of Things, 3-5 June 2019, Munich, Germany E. Korkan, H. Belhaj, V. Schlott, S. Käbisch and S. Steinhorst

1 {

2 title: "WoTify JSON Schema for checking

implementation inputs",

3 type: "object","required: [...],

4 properties: {

5 name: {type: "string",minLength: 5},

6 shortDescription: {

7 type: "string",minLength: 5,maxLength: 180},

8 longDescription: {

9 type: "string",minLength: 5,maxLength: 500},

10 github: {type: "string",format: "uri"},

11 readme: {type: "string",format: "uri"},

12 implementationType: {enum:["template", "code"]},

13 topic": {

14 type: "array",additionalItems: false,

15 minItems: 1,uniqueItems: true,

16 items: {

17 enum: ["sensor", "actuator", "robotics", "

lighting","other"]

18 }

19 },

20 platform:{enum:["raspberry","arduino","ESP","other"

]},

21 tags: {

22 type:"array",additionalItems:false,minItems:1,

23 uniqueItems: true,items: {type: "string"}

24 },

25 complexity:{enum:["simple","medium","expert"]},

26 version: {

27 type: "object",required: ["instance"],

28 properties:{instance:{type:"string"}}

29 },

30 td:{type:object,properties:{...},required:[...]}

31 }

32 }

Listing 2: The JSON Schema WoTify uses to describe and validate
the project information

TDs, but the main difference is that WoTify is not limited to TDs
and its aim is not to find TDs of other devices but to turn any device
into a WoT device.

6 OUTLOOK
The task we have overtaken with WoTify is still in its infancy re-
garding the features it can offer based on the concept introduced
in Section 3. We are planning to continue adding new features and
shape it according to the feedback from the community. We have
already seen the following features as the most needed in the short
run:

• WoTify CLI: The WoTify CLI has been introduced in Sec-
tion 3.1, but this part is not ready yet. Thus, in the cur-
rent state of WoTify, developers need to install the WoTify
projects according to the General Information page of the
project.

• TD Template Editor: In the current state of WoTify, TD
templates have to be edited manually after downloading
them. This can be an error-prone process with errors result-
ing in a cumbersome debugging process since one would
need to read the API description of the given device. An em-
bedded TD editor that forces the developer to input only the
relevant and correct information is necessary in the devel-
opment of WoTify.

• Rating System: It is very important to stress the fact that
WoTify projects that are downloaded will run on actual
physical devices. Since we cannot run every WoTify project
for each intended device, the community will need to be in-
volved in a certain feedback mechanism to ensure the qual-
ity of the projects. In platforms like npm, this can be shown
by weekly download counts or in Node-RED Library, this

is done by users giving stars as rating. This feature would
also help to show the support of the community, encourag-
ing the adoption of W3C WoT.

Additionally, the work of the W3CWoT Testing Task Force can
be used in the future to certify the correctness of the projects,
strengthening the trust on projects. We can foresee tools like WoT

Test Bench14 integrated into WoTify CLI to run tests before pub-
lishing the project. This verification can be further enhanced by
the contributors when they provide the recently introduced path
descriptions[13]. The paths would also provide the developers a
more constrained but safer way of using WoT devices.

7 CONCLUSION
In this paper, we have presented a new platform for W3C Web of
Things projects that is already online for theWoT community. This
platform is called WoTify and it is able to host WoT projects that
can be used to WoTify existing devices, including brownfield IoT
devices. Additionally, we have proposed a new type of command
line interface for managing WoTify projects that is independent
of programming languages. We believe that thanks to WoTify, the
W3C WoT can be adopted by a wide array of developers, allow-
ing them to quickly deploy the Web layer on various Internet con-
nected devices and turn them into W3C WoT compatible devices.

REFERENCES
[1] 2018. Stack Overflow Developer Survey 2018. , Stack Overflow. https://insights.

stackoverflow.com/survey/2018#developer-roles

[2] S. Kaebisch, T. Kamiya, Michael McCool, and Victor Charpenay. 2019. Web of

Things (WoT) Thing Description. Candidate Recommendation, W3C. https://

www.w3.org/TR/2019/CR-wot-thing-description-20190516/.

[3] Zoltan Kis, Kazuaki Nimura, Daniel Peintner, and Johannes Hund. 2018. Web

of Things (WoT) Scripting API. . (nov 2018). https://www.w3.org/TR/2018/

WD-wot-scripting-api-20181129/

[4] Raggett Dave, Ashimura Kazuyuki, and Chen Yingying. 2016.White Paper for the

Web of Things. , W3C. http://w3c.github.io/wot/charters/wot-white-paper-2016.

html

[5] Arne Bröring, Stefan Schmid, Corina-Kim Schindhelm, and Denis Kramer. 2017.

Enabling IoT Ecosystems through Platform Interoperability The Problem of

Missing IoT Interoperability. IEEE Software 34, 1, 54–61.

[6] Bhaskar Krishnamachari, Jerry Power, Seon Ho Kim, and Cyrus Shahabi. 2018.

I3: an IoT marketplace for smart communities. In Proceedings of the 16th Annual

International Conference onMobile Systems, Applications, and Services. ACM, 498–

499.

[7] JS Foundation. 2019. Node-RED Library. https://flows.nodered.org/?sort=

downloads&num_pages=1 [Online; accessed April 21, 2019].

[8] Daniel Peintner, Matthias Kovatsch, Christian Glomb, Johannes Hund, Sebastian

Kaebisch, Victor Charpenay. 2018. Eclipse Thingweb Project. https://projects.

eclipse.org/projects/iot.thingweb [Online; accessed April 21, 2019].

[9] Raspberry Pi Foundation. 2019. Sense HAT - Raspberry Pi. https://www.

raspberrypi.org/app/uploads/2017/05/Sense-HAT-plugged-in-1-1383x1080.jpg

[Online; accessed April 21, 2019].

[10] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, and K. Ka-

jimoto. 2019. Web of Things (WoT) Architecture. Candidate Recommendation,

W3C. https://www.w3.org/TR/2019/CR-wot-architecture-20190516/

[11] JS Foundation. 2019. node-red-dashboard. https://flows.nodered.org/node/

node-red-dashboard [Online; accessed April 21, 2019].

[12] marmot. 2002. Re: Killer Apps in Perl? https://www.perlmonks.org/bare/?node_

id=187498 [Online; accessed April 21, 2019].

[13] Ege Korkan, Sebastian Kaebisch, Matthias Kovatsch, and Sebastian Steinhorst.

2018. Sequential Behavioral Modeling for Scalable IoT Devices and Systems. In

2018 Forum on Specification & Design Languages (FDL). 5–16.

14https://github.com/tum-ei-esi/testbench

